Genome-Wide Analysis and Expression Profiling of Rice Hybrid Proline-Rich Proteins in Response to Biotic and Abiotic Stresses, and Hormone Treatment

Plants (Basel). 2019 Sep 11;8(9):343. doi: 10.3390/plants8090343.

Abstract

Hybrid proline-rich proteins (HyPRPs) belong to the family of 8-cysteine motif (8CM) containing proteins that play important roles in plant development processes, and tolerance to biotic and abiotic stresses. To gain insight into the rice HyPRPs, we performed a systematic genome-wide analysis and identified 45 OsHyPRP genes encoding 46 OsHyPRP proteins. The phylogenetic relationships of OsHyPRP proteins with monocots (maize, sorghum, and Brachypodium) and a dicot (Arabidopsis) showed clustering of the majority of OsHyPRPs along with those from other monocots, which suggests lineage-specific evolution of monocots HyPRPs. Based on our previous RNA-Seq study, we selected differentially expressed OsHyPRPs genes and used quantitative real-time-PCR (qRT-PCR) to measure their transcriptional responses to biotic (Magnaporthe oryzae) and abiotic (heat, cold, and salt) stresses and hormone treatment (Abscisic acid; ABA, Methyl-Jasmonate; MeJA, and Salicylic acid; SA) in rice blast susceptible Pusa Basmati-1 (PB1) and blast-resistant near-isogenic line PB1+Pi9. The induction of OsHyPRP16 expression in response to the majority of stresses and hormonal treatments was highly correlated with the number of cis-regulatory elements present in its promoter region. In silico docking analysis of OsHyPRP16 showed its interaction with sterols of fungal/protozoan origin. The characterization of the OsHyPRP gene family enables us to recognize the plausible role of OsHyPRP16 in stress tolerance.

Keywords: Magnaporthe oryzae; abiotic stress; biotic stress; hybrid proline-rich proteins; rice.