TreeMerge: a new method for improving the scalability of species tree estimation methods

Bioinformatics. 2019 Jul 15;35(14):i417-i426. doi: 10.1093/bioinformatics/btz344.

Abstract

Motivation: At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species.

Results: Here we present a new method called 'TreeMerge' that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework-only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All.

Availability and implementation: TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge).

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Data Collection
  • Phylogeny*