Chirality selective metamaterial absorber with dual bands

Opt Express. 2019 Sep 2;27(18):25983-25993. doi: 10.1364/OE.27.025983.

Abstract

In this paper, a sensitive chirality selective metamaterial absorber (CSMA) is constructed by using 'I-shaped' resonator with asymmetric twisted metallic wires. Absorption of 95.18% and 91.77% at two resonant frequencies can be achieved for left-handed circularly polarized (LCP) incident wave, with little loss of right-handed circularly polarized (RCP) incident wave, which results in significant absorptive circular dichroism. Not only can the CSMA intensely absorb LCP illumination with dual bands, but also circularly polarized (CP) conversion for RCP wave is achieved over a broad bandwidth. The spin-dependent absorption, closely linked to chiral symmetry breaking, is investigated through oblique incidence, power loss distribution and scanning parameters optimization. The proposed strategy is further demonstrated in mid-infrared band which could advance the applications in polarization manipulation to circularly polarized detectors/lasers, chiral sensing/bolometers, and molecular spectroscopy.