Parallel-plate waveguides for terahertz-driven MeV electron bunch compression

Opt Express. 2019 Aug 19;27(17):23791-23800. doi: 10.1364/OE.27.023791.

Abstract

We demonstrate the electromagnetic performance of waveguides for femtosecond electron beam bunch manipulation and compression with strong-field terahertz (THz) pulses. The compressor structure is a dispersion-free exponentially-tapered parallel-plate waveguide (PPWG) that can focus single-cycle THz pulses along one dimension. We show test results of the tapered PPWG structure using electro-optic sampling (EOS) at the interaction region with peak fields of at least 300 kV/cm, given 0.9 µJ of incoming THz energy. We also present a modified shorted design of the tapered PPWG for better beam manipulation and reduced magnetic field as an alternative to a dual-feed approach. As an example, we demonstrate that with 5 µJ of THz energy, the PPWG compresses a 2.5 MeV electron bunch by a compression factor of more than 4, achieving a bunch length of about 18 fs.