Ferroelectric nanocomposite networks with high energy storage capacitance and low ferroelectric loss by designing a hierarchical interface architecture

Phys Chem Chem Phys. 2019 Oct 7;21(37):20661-20671. doi: 10.1039/c9cp03389k. Epub 2019 Sep 11.

Abstract

Nanoscale design of nanofillers and interfacial architecture are vital to achieve high-capacity and high-energy-conversion efficiency poly(vinylidene fluoride) [(PVDF)-based] nanocomposite materials for vast potential applications in modern electronic devices and electric power systems. Using traditional methods, the addition of ceramic nanoparticles can only produce one type of interface between the nanoparticles and this matrix, achieving an enhanced dielectric constant and energy density at the expense of the charge-discharge efficiency. Herein, we demonstrate a novel class of cross-linking nanofiller system, poly(vinylidene fluoride-chlorotrifluoroethylene)/γ-methacryloylpropyl trimethoxysilane@BaTiO3 [P(VDF-CTFE)/MPS@BT]. This novel approach can not only provide the interfaces between the nanoparticle and the matrix, but also scale down the size of crystalline domains, which results in producing more additional interfaces between the crystalline and amorphous phases to achieve an improved discharged energy density. Remarkably, the smaller crystalline domains, which were characterized by XRD and FTIR spectroscopy, could be beneficial for improving the dipole switchability from the polar phases to non-polar phases during the charge-discharge cycles, leading to unprecedented charge-discharge efficiency. Furthermore, the addition of MPS@BT NPs can regulate two stages of the discharge rate. The early discharge process can be accelerated, while the following stage is obviously delayed. The simplicity of the hierarchical interfacial engineering method provides a promising path to design ferroelectric polymer nanocomposites for dielectric capacitor applications.