Interconnected Pd Nanoparticles Supported on Zeolite-AFI for Hydrogen Detection under Ultralow Temperature

ACS Appl Mater Interfaces. 2019 Oct 9;11(40):36847-36853. doi: 10.1021/acsami.9b12272. Epub 2019 Sep 25.

Abstract

The stability for a hydrogen sensor is of crucial importance under a low-temperature range (e.g., 200-400 K), especially in critical environments (e.g., aerospace). However, the "reverse sensing behavior" of Pd-based sensing materials at low temperatures limits their wide application. Herein, a three-dimensional (3D) hydrogen-sensing material of interconnected Pd nanoparticles supported on zeolite-AFI (zeolite-AFI@Pd NPs) is designed for the hydrogen sensor at low temperature. The interconnected Pd NPs of ∼15 nm in diameter are achieved onto the zeolite-AFI framework by reduction-controlled self-assembly growth, followed by partially etching-off zeolite. The 3D structure provides a larger surface ratio for improving hydrogen adsorption onto Pd, and more space for PdHx intermediate expansion, which effectively facilitates response to hydrogen and suppresses the α-β phase transition. Remarkably, there is no "reverse sensing behavior" observed in zeolite-AFI@Pd NPs, though temperature is as low as to 200 K compared with that of pristine Pd nanowires at 287 K. Furthermore, the zeolite-AFI@Pd NPs sensors yield excellent sensing response and high stability to hydrogen at temperature from 200 to 400 K. Such Zeolite-AFI@Pd NPs sensors are expected to detect hydrogen leakage, especially in critical environments of low temperature.

Keywords: hydrogen sensor; low temperature; palladium; stability; zeolite-AFI.