Highly c-axis orientated superconducting core and large critical current density in Ba0.6Na0.4Fe2As2 powder-in-tube tape

Sci Rep. 2019 Sep 10;9(1):13064. doi: 10.1038/s41598-019-49363-y.

Abstract

Improvement of the critical current density (Jc) of superconducting wires/tapes is one of the key issues in the field of superconductivity applications. Here we report the fabrication of a silver-sheathed Ba1-xNaxFe2As2 (BaNa-122) superconducting tape by using a powder-in-tube technique and its superconducting properties, in particular transport Jc, as well as the tape-core texture. The optimally-doped BaNa-122 tape with Na concentration x = 0.4 exhibits the superconducting critical temperature (Tc) of 33.7 K and high transport Jc of 4 × 104 A/cm2 at 4.2 K in a magnetic field of 4 T. Patterns of x-ray diffraction for the superconducting core show that the degree of c-axis orientation is significantly enhanced through the tape fabrication process. The tendency of c-axis orientation is advantageous for achieving higher Jc, suggesting the high potential of BaNa-122 for superconducting wire/tape applications.