Combination of Lagrangian Discrete Phase Model and sediment physico-chemical characteristics for the prediction of the distribution of trace metal contamination in a stormwater detention basin

Sci Total Environ. 2020 Jan 1:698:134263. doi: 10.1016/j.scitotenv.2019.134263. Epub 2019 Sep 3.

Abstract

Elevated trace metal concentrations in sediments pose a major problem for the management of stormwater detention basins. These basins provide a nature-based solution to remove particulate pollutants through settling, but the resuspension of these contaminated deposits may impact the quality of both surface and groundwater. A better understanding of trace metal distribution will help to improve basin design and sediment management. This study aims to predict the distribution of trace metal contamination in a stormwater detention basin through (i) investigation of the correlation between metal content in sediments and their settling velocity, and (ii) the coupling of such correlation with a Lagrangian Discrete Phase Model (LDPM). The correlation between Fe, Cr, Cu, Ni, Pb contents and the settling velocity is firstly investigated, based on the sediments collected from 6 sites (inlet and 5 traps at the bottom of a detention basin situated in Chassieu, France) during 5 campaigns in 2017. Results show that Fe is strongly correlated to settling velocity and can be considered as a good indicator of trace metal contents. The derived correlation is then combined with a LDPM for the prediction of trace metal distribution, producing results consistent with in situ measurements. The proposed methodology can be applied for other stormwater basins (dry or wet). As described in this article, the interactions between hydrodynamics and sediment physico-chemical characteristics is crucial for the design and management of stormwater detention basins, allowing managers to target the highest contaminated sediments.

Keywords: Hydrodynamics; Metal contamination; Sediment; Settling velocity; Stormwater treatment.