A Modular Approach to Phosphorescent π-Extended Heteroacenes

Inorg Chem. 2019 Oct 7;58(19):13323-13336. doi: 10.1021/acs.inorgchem.9b02213. Epub 2019 Sep 10.

Abstract

A modular route to previously inaccessible classes of ring-fused π-extended heteroacenes bearing the heavy inorganic element tellurium (Te) is presented. These new materials can be viewed as n-doped analogs of molecular graphene subunits that exhibit color tunable visible light phosphorescence in the solid state and in the presence of air. The general mechanism of phosphorescence in these systems was probed experimentally and computationally via time-dependent density functional theory (TD-DFT). The incorporation of Te into π-extended oligoacene frameworks was achieved by an efficient Zr/Te transmetalation protocol; related zirconium-element exchange reactions have been used to prepare both electron-rich and electron-deficient heterocycles containing different elements from throughout the p-block. Therefore, the current study provides a clear path to incorporate inorganic elements into heteroacenes of greater complexity and side group selectivity compared to existing synthetic routes.