CO2 reutilization for methane production via a catalytic process promoted by hydrides

Phys Chem Chem Phys. 2019 Sep 18;21(36):19825-19834. doi: 10.1039/c9cp03826d.

Abstract

CO2 emissions have been continuously increasing during the last half of the century with a relevant impact on the planet and are the main contributor to the greenhouse effect and global warming. The development of new technologies to mitigate these emissions poses a challenge. Herein, the recycling of CO2 to produce CH4 selectively by using Mg2FeH6 and Mg2NiH4 complex hydrides as dual conversion promoters and hydrogen sources has been demonstrated. Magnesium-based metal hydrides containing Fe and Ni catalyzed the hydrogenation of CO2 and their total conversion was obtained at 400 °C after 5 h and 10 h, respectively. The complete hydrogenation of CO2 depended on the complex hydride, H2 : CO2 mol ratio, and experimental conditions: temperature and time. For both hydrides, the activation of CO2 on the metal surface and its subsequent capture resulted in the formation of MgO. Investigations on the Mg2FeH6-CO2 system indicated that the main process occurs via the reversed water-gas shift reaction (WGSR), followed by the methanation of CO in the presence of steam. In contrast, the reduction of CO2 by the Mg-based hydride in the Mg2NiH4-CO2 system has a strong contribution to the global process. Complex metal hydrides are promising dual promoter-hydrogen sources for CO2 recycling and conversion into valuable fuels such as CH4.