Evaluation of Slag Reaction Efficiency in Slag-Cement Mortars under Different Curing Temperature

Materials (Basel). 2019 Sep 5;12(18):2875. doi: 10.3390/ma12182875.

Abstract

At present, not many studies have considered methods to quantitatively evaluate the reaction efficiency of granulated blast furnace slag (GBFS) at different curing temperatures. For high volume slag concrete, when the replacement ratio exceeds a certain 'threshold' value, the superfluous and ineffective slag will no longer react in concrete but simply behave as a fine aggregate, which may cause the decrement of strength. The 'threshold' value depends on the reaction efficiency of slag. In this study, experiments on mortars with different replacement ratios by slag were conducted at different curing temperatures (20, 30, and 50 °C, respectively), the threshold values of effective replacement ratio by slag were comprehensively analyzed through the reaction efficiency of slag mortar. The results showed that the turning point of the strength curve with replacement ratio can be considered as the threshold value of the effective replacement ratio by slag in mortar. Along with the curing temperature enhancement, the threshold value of the effective replacement ratio by slag in concrete decreased, whereas the reaction efficiency of slag increased. Meanwhile, the analysis of cement effective coefficient (k value) and basicity was also calculated. Based on the obtained threshold values of effective replacement ratio at different curing temperatures, the formula for the determination of reaction efficiency coefficient of slag in the mortar can be established. Therefore, the reaction efficiency coefficient and upper limit of the effective replacement ratio of slag at different temperatures can be calculated more intuitively and quantitatively, providing a theoretical basis and reference for practical engineering applications.

Keywords: blast furnace slag; calcium hydroxide; compressive strength; effective replacement ratio; reaction efficiency coefficient.