Temporary inhibition of positive phototaxis in emigratory population of Nilaparvata lugens by mark-release-recapture

PLoS One. 2019 Sep 6;14(9):e0222214. doi: 10.1371/journal.pone.0222214. eCollection 2019.

Abstract

Light traps are used to determine the temporal and spatial dynamics of the migratory brown planthoppers (BPHs) Nilaparvata lugens. But very little is known whether newly emerged adults respond to local light traps during the emigration period. Thus, it is important to evaluate the efficiency of light traps in attracting emigrant and immigrant populations to improve forecasting and control of this pest. The migration periods of N. lugens were determined by field surveys in Fuyang, Zhejiang province in 2012 and Yongfu, Guangxi Zhuang Autonomous Region in 2013. Mark-release-recapture experiments with both newly emerged (unflown) and flight experienced (flown) N. lugens were conducted at the two study sites. The marking method did not have any significant effect on the survival or flight capability of the N. lugens. A total of 4800 marked flown and 8400 unflown BPHs were released at a distance of 10, 20 and 30 m from 45-watt fluorescent actinic light traps. The results showed that without wind (< 3.2 m/s) or rainfall conditions, the overall recapture rate of flown BPHs was higher than that of unflown BPHs (9.60% and 0.92%, respectively; χ21 = 589.66, P < 0.0001). Curve estimation regression analysis showed that flown BPHs were attracted to the light source at a distance of 19.77 m, and unflown BPH at a distance of 5.35 m, with these distances corresponding to a 5% recapture rate. Given that the population dynamics of BPHs in the light traps were not synchronous with that in the fields, our results indicate that only a few emerging BPHs in an infested site can be captured locally by light traps. Therefore, care must be taken in estimating the abundance of the sample to absolute local abundance during sedentary and emigration period.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Migration / physiology*
  • Animals
  • Flight, Animal / physiology
  • Hemiptera / physiology*
  • Phototaxis / physiology*

Grants and funding

This study was funded by the National Basic Research Program of China (2010CB126200), Ph. D. Programs Foundation of Henan University of Science and Technology (13480048) and Key Science and Technology Program of Henan Province (182102110255) and National Natural Science Foundation of China, (31901872). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.