DFT and microkinetic investigation of methanol synthesis via CO2 hydrogenation on Ni(111)-based surfaces

Phys Chem Chem Phys. 2019 Sep 18;21(36):20276-20286. doi: 10.1039/c9cp02970b.

Abstract

A DFT study of methanol production via CO2 hydrogenation reactions on clean Ni(111) and Ni(111)-M (M = Cu, Pd, Pt, or Rh) surfaces has been performed. The reaction network of this synthesis reaction has been determined using energy profiles. The competing reaction network between the formate-mediated route and the carboxyl-mediated route is also presented. Both routes are equally possible in mediating the overall synthesis reactions. A simple selectivity analysis based on the energy barrier shows that methanol synthesis is more preferred rather than formic acid (HCOOH) or carbon monoxide (CO) production. A mean-field kinetic analysis is also employed to determine the kinetic performance of all catalytic surfaces. The formate-mediated route is found to be energetically and kinetically more dominant than the carboxyl-mediated route. Cu, Pd, and Pt dopants are successful in increasing the kinetic performance of the clean Ni(111) surface in the formate route and Cu, Pt, and Rh dopants in the carboxyl route.