Study on the Fatigue and Durability Behavior of Structural Expanded Polystyrene Concretes

Materials (Basel). 2019 Sep 6;12(18):2882. doi: 10.3390/ma12182882.

Abstract

The fatigue and durability characteristics of structural expanded polystyrene concrete (EPS) are especially important when it was applied for structural elements in long-term service. In order to study the fatigue and durability behavior of structural EPS concrete, the long-term cyclic loading experiments and wetting-drying (W-D) cyclic experiments were conducted, respectively. The structural EPS concrete was found to have a relatively large damping and a fairly low dynamic elastic modulus under long-term cyclic load, which illustrated that it had a better energy absorption effect and toughness than plain concrete of the same strength level. Even if fine cracks appeared during the cyclic loading process, the relevant dynamic performance remained stable, which indicated that the structural EPS concrete had superior fatigue stability. In W-D cyclic experiments, the structural EPS concrete exhibited superior sulfate resistance. During the erosion test process, there was a positive correlation between the mass change and the evolution of the compressive strength of the structural EPS concrete, which indicated that ΔmB could be substituted for Δf to evaluate the degree of the structural EPS concrete eroded by sulfate attack. The study focuses on the fatigue performance and sulfate resistance of structural EPS concrete and is of important engineering value for promoting practical long-term operations.

Keywords: damping ratio; dynamic elastic modulus; long-term cyclic loading; structural expanded polystyrene (EPS) concrete; sulfate resistance.