Phosphorylated claudin-16 interacts with Trpv5 and regulates transcellular calcium transport in the kidney

Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19176-19186. doi: 10.1073/pnas.1902042116. Epub 2019 Sep 5.

Abstract

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC) was previously considered to be a paracellular channelopathy caused by mutations in the claudin-16 and claudin-19 genes. Here, we provide evidence that a missense FHHNC mutation c.908C>G (p.T303R) in the claudin-16 gene interferes with the phosphorylation in the claudin-16 protein. The claudin-16 protein carrying phosphorylation at residue T303 is localized in the distal convoluted tubule (DCT) but not in the thick ascending limb (TAL) of the mouse kidney. The phosphomimetic claudin-16 protein carrying the T303E mutation but not the wildtype claudin-16 or the T303R mutant protein increases the Trpv5 channel conductance and membrane abundance in human kidney cells. Phosphorylated claudin-16 and Trpv5 are colocalized in the luminal membrane of the mouse DCT tubule; phosphomimetic claudin-16 and Trpv5 interact in the yeast and mammalian cell membranes. Knockdown of claudin-16 gene expression in transgenic mouse kidney delocalizes Trpv5 from the luminal membrane in the DCT. Unlike wildtype claudin-16, phosphomimetic claudin-16 is delocalized from the tight junction but relocated to the apical membrane in renal epithelial cells because of diminished binding affinity to ZO-1. High-Ca2+ diet reduces the phosphorylation of claudin-16 protein at T303 in the DCT of mouse kidney via the PTH signaling cascade. Knockout of the PTH receptor, PTH1R, from the mouse kidney abrogates the claudin-16 phosphorylation at T303. Together, these results suggest a pathogenic mechanism for FHHNC involving transcellular Ca2+ pathway in the DCT and identify a molecular component in renal Ca2+ homeostasis under direct regulation of PTH.

Keywords: PTH; Trpv5; calcium; claudin; tight junction.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Channels / genetics
  • Calcium Channels / metabolism*
  • Cell Membrane Permeability
  • Claudins / antagonists & inhibitors
  • Claudins / genetics
  • Claudins / metabolism*
  • HEK293 Cells
  • Humans
  • Kidney Tubules, Distal / metabolism*
  • Male
  • Mice
  • Mice, Knockout
  • Phosphorylation
  • TRPV Cation Channels / antagonists & inhibitors
  • TRPV Cation Channels / genetics
  • TRPV Cation Channels / metabolism*
  • Tight Junctions / metabolism*
  • Transcytosis*

Substances

  • Calcium Channels
  • Claudins
  • TRPV Cation Channels
  • Trpv5 protein, mouse
  • claudin 16
  • Calcium