Comparative Theoretical Studies on a Series of Novel Energetic Salts Composed of 4,8-Dihydrodifurazano[3,4-b,e]pyrazine-based Anions and Ammonium-based Cations

Molecules. 2019 Sep 4;24(18):3213. doi: 10.3390/molecules24183213.

Abstract

4,8-Dihydrodifurazano[3,4-b,e]pyrazine (DFP) is one kind of parent compound for the synthesis of various promising difurazanopyrazine derivatives. In this paper, eleven series of energetic salts composed of 4,8-dihydrodifurazano[3,4-b,e]pyrazine-based anions and ammonium-based cations were designed. Their densities, heats of formation, energetic properties, impact sensitivity, and thermodynamics of formation were studied and compared based on density functional theory and volume-based thermodynamics method. Results show that ammonium and hydroxylammonium salts exhibit higher densities and more excellent detonation performance than guanidinium and triaminoguanidinium salts. Therein, the substitution with electron-withdrawing groups (-NO2, -CH2NF2, -CH2ONO2, -C(NO2)3, -CH2N3) contributes to enhancing the densities, heats of formation, and detonation properties of the title salts, and the substitution of -C(NO2)3 features the best performance. Incorporating N-O oxidation bond to difurazano[3,4-b,e]pyrazine anion gives a rise to the detonation performance of the title salts, while increasing their impact sensitivity meanwhile. Importantly, triaminoguanidinium 4,8-dihydrodifurazano[3,4-b,e]pyrazine (J4) has been successfully synthesized. The experimentally determined density and H50 value of J4 are 1.602 g/cm3 and higher than 112 cm, which are consistent with theoretical values, supporting the reliability of calculation methods. J4 proves to be a thermally stable and energetic explosive with decomposition peak temperature of 216.7 °C, detonation velocity 7732 m/s, and detonation pressure 25.42 GPa, respectively. These results confirm that the derivative work in furazanopyrazine compounds is an effective strategy to design and screen out potential candidates for high-performance energetic salts.

Keywords: detonation performance; difurazano[3,4-b,e]pyrazine; impact sensitivity; ionic salts; thermodynamics of formation.

MeSH terms

  • Algorithms
  • Ammonium Compounds / chemistry*
  • Anions / chemistry*
  • Cations / chemistry*
  • Models, Theoretical*
  • Molecular Structure
  • Pyrazines / chemistry*
  • Salts / chemistry*
  • Sensitivity and Specificity
  • Thermodynamics

Substances

  • Ammonium Compounds
  • Anions
  • Cations
  • Pyrazines
  • Salts