Indirect effects of water availability in driving and predicting productivity in the Gobi desert

Sci Total Environ. 2019 Dec 20:697:133952. doi: 10.1016/j.scitotenv.2019.133952. Epub 2019 Aug 17.

Abstract

Climate is the fundamental determinant of plant metabolism and net primary productivity (NPP). However, whether climate drives NPP directly or indirectly is not well understand. The Gobi desert across a precipitation gradient in the arid zone provides an ideal naturally-controlled platform for studying the precipitation-productivity relationships. We conducted 3-year experiments in four Gobi desert shrublands across an aridity gradient in Gansu Province of China to test the relationship between water availability and shrub productivity as well as the relative importance of the possible factors driving productivity (using piecewise structural equation modeling) and to explore the appropriate variables for predicting productivity (using three spatial models). The results showed that water availability indirectly affected the NPP via stand biomass, while stand biomass had a significant direct effect on NPP regardless of whether the leaf water content and stand height were considered. The model based on stand size (71.6%) and the model that contained both stand size and water availability (72.3%) explained more of the variation in the water-NPP relationships than the model based on water availability (37.3%). Our findings suggest that even in extremely water-limited areas, the effects of water availability on plant growth and the kinetics of plant metabolism could be indirect via plant size, demonstrating the importance of plant size as an indicator of shrub productivity. This study explains the mechanisms underlying the NPP driving pattern and proposes a practical NPP model for arid ecosystems.

Keywords: Leaf water content; Net primary productivity; Piecewise structural equation model; Stand height; Stand size; Water availability.