Tip-induced superconductivity coexisting with preserved topological properties in line-nodal semimetal ZrSiS

J Phys Condens Matter. 2019 Dec 4;31(48):485707. doi: 10.1088/1361-648X/ab3b61. Epub 2019 Sep 5.

Abstract

ZrSiS was recently shown to be a new material with topologically non-trivial band structure that exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2 eV. Such a robust linear dispersion makes the topological properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here, we show that a novel superconducting phase with a remarkably high [Formula: see text] of 7.5 K can be induced in single crystals of ZrSiS by a non-superconducting metallic tip of Ag. From first-principles calculations, we show that the observed superconducting phase might originate from a dramatic enhancement of density of states due to the presence of a metallic tip on ZrSiS. Our calculations also show that the emerging tip-induced superconducting phase co-exists with the well preserved topological properties of ZrSiS.