Translating antibiotic prescribing into antibiotic resistance in the environment: A hazard characterisation case study

PLoS One. 2019 Sep 4;14(9):e0221568. doi: 10.1371/journal.pone.0221568. eCollection 2019.

Abstract

The environment receives antibiotics through a combination of direct application (e.g., aquaculture and fruit production), as well as indirect release through pharmaceutical manufacturing, sewage and animal manure. Antibiotic concentrations in many sewage-impacted rivers are thought to be sufficient to select for antibiotic resistance genes. Yet, because antibiotics are nearly always found associated with antibiotic-resistant faecal bacteria in wastewater, it is difficult to distinguish the selective role of effluent antibiotics within a 'sea' of gut-derived resistance genes. Here we examine the potential for macrolide and fluoroquinolone prescribing in England to select for resistance in the River Thames catchment, England. We show that 64% and 74% of the length of the modelled catchment is chronically exposed to putative resistance-selecting concentrations (PNEC) of macrolides and fluoroquinolones, respectively. Under current macrolide usage, 115 km of the modelled River Thames catchment (8% of total length) exceeds the PNEC by 5-fold. Similarly, under current fluoroquinolone usage, 223 km of the modelled River Thames catchment (16% of total length) exceeds the PNEC by 5-fold. Our results reveal that if reduced prescribing was the sole mitigating measure, that macrolide and fluoroquinolone prescribing would need to decline by 77% and 85%, respectively, to limit resistance selection in the catchment. Significant reductions in antibiotic prescribing are feasible, but innovation in sewage-treatment will be necessary for achieving substantially-reduced antibiotic loads and inactivation of DNA-pollution from resistant bacteria. Greater confidence is needed in current risk-based targets for antibiotics, particularly in mixtures, to better inform environmental risk assessments and mitigation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / analysis
  • Databases, Factual
  • Drug Prescriptions / statistics & numerical data*
  • Drug Resistance, Microbial*
  • England
  • Fluoroquinolones / analysis
  • Macrolides / analysis
  • Rivers / microbiology*
  • Seasons
  • Sewage / chemistry

Substances

  • Anti-Bacterial Agents
  • Fluoroquinolones
  • Macrolides
  • Sewage

Grants and funding

This work received an award from the UKRI-funded Cross Research Council AMR in the Real World, Grant NE/N019687/1 to ACS. The funder played no role in the study design, data collection or analysis.