Photolytic and Reductive Activations of 2-Arsaethynolate in a Uranium-Triamidoamine Complex: Decarbonylative Arsenic-Group Transfer Reactions and Trapping of a Highly Bent and Reduced Form

Chemistry. 2019 Nov 7;25(62):14246-14252. doi: 10.1002/chem.201903973. Epub 2019 Oct 8.

Abstract

Little is known about the chemistry of the 2-arsaethynolate anion, but to date it has exclusively undergone fragmentation reactions when reduced. Herein, we report the synthesis of [U(TrenTIPS )(OCAs)] (2, TrenTIPS =N(CH2 CH2 NSiiPr3 )3 ), which is the first isolable actinide-2-arsaethynolate linkage. UV-photolysis of 2 results in decarbonylation, but the putative [U(TrenTIPS )(As)] product was not isolated and instead only [{U(TrenTIPS )}2 (μ-η22 -As2 H2 )] (3) was formed. In contrast, reduction of 2 with [U(TrenTIPS )] gave the mixed-valence arsenido [{U(TrenTIPS )}2 (μ-As)] (4) in very low yield. Complex 4 is unstable which precluded full characterisation, but these photolytic and reductive reactions testify to the tendency of 2-arsaethynolate to fragment with CO release and As transfer. However, addition of 2 to an electride mixture of potassium-graphite and 2,2,2-cryptand gives [{U(TrenTIPS )}2 {μ-η2 (OAs):η2 (CAs)-OCAs}][K(2,2,2-cryptand)] (5). The coordination mode of the trapped 2-arsaethynolate in 5 is unique, and derives from a new highly reduced and bent form of this ligand with the most acute O-C-As angle in any complex to date (O-C-As ≈128°). The trapping rather than fragmentation of this highly reduced O-C-As unit is unprecedented, and quantum chemical calculations reveal that reduction confers donor-acceptor character to the O-C-As unit.

Keywords: arsaethynolate; carbenes; decarbonylation; density functional calculations; uranium.