An amino-functionalized ordered mesoporous polymer as a fiber coating for solid phase microextraction of phenols prior to GC-MS analysis

Mikrochim Acta. 2019 Sep 2;186(9):665. doi: 10.1007/s00604-019-3777-y.

Abstract

An amino-functionalized ordered mesoporous polymer (OMP-NH2) was synthesized and applied as a fiber coating for solid phase microextraction of polar phenols from environmental samples. The fiber coating was prepared by loading the OMP-NH2 powder onto a stainless steel wire through silicone gel. Combined with GC-MS, the fibers were employed to quantify trace of phenols in water through headspace-SPME. The characterization showed the OMP-NH2 to have a large specific surface area (420 m2 g-1) and good thermal stability (>400 °C). Due to its mesoporous structure and favorable interactions via hydrogen bonding and π stacking interactions with phenols, the sorbent represents a promising candidate for the separation and enrichment of polar phenols. Extraction conditions, such as temperature, extraction time, salt concentration, pH value and desorption time, were fully optimized. Under the optimized conditions, the coating exhibits an enrichment effect that is ~2-10 times better than that of a commercial polyacrylate coating. Figures of merit include (a) low limits of detection (0.05-0.16 ng L-1), (b) wide linear ranges (0.2-10,000 ng L-1), and (c) high enrichment factors (510-2272). The relative standard deviations for one fiber and fiber-to-fiber were in the range of 4.0-6.1% and 4.6-7.4%, respectively. The method was applied to the determination of phenols in water samples and gave satisfactory recoveries between 85.4 and 112.2%. Graphical abstract An amino-functionalized ordered mesoporous polymer (OMP-NH2) was synthesized by a solventless method and applied as headspace solid phase microextraction (HS-SPME) fiber coating for the extraction of polar phenols from the environmental samples.

Keywords: Amino modification; Environmental analysis; Fiber coating; Headspace extraction mode; Sample preparation.

Publication types

  • Research Support, Non-U.S. Gov't