Comprehensive profiling of lipid oxidation volatile compounds during storage of mayonnaise

J Food Sci Technol. 2019 Sep;56(9):4076-4090. doi: 10.1007/s13197-019-03876-6. Epub 2019 Jun 19.

Abstract

Lipid oxidation is a primary cause of quality deterioration in mayonnaise that leads to a decrease in the nutritional and sensorial value. The evolution of volatile oxidation compounds in sunflower oil mayonnaise stored at varying temperatures for 92 days and the antioxidative effect of butylated hydroxyanisole were investigated by static headspace extraction and separation by two dimensional gas chromatography/time-of-flight mass spectrometry. Considerable differences in the headspace composition of samples stored at 4, 25 and 38 °C were found due to the different oxidation levels reached. The content of hexanal in mayonnaise at 1-5 days of storage at 38 °C could be used to predict the corresponding compound in mayonnaise at 1-62 days of storage at 25 °C. The 10 most important discriminating volatile compounds during lipid oxidation of mayonnaise (at 38 °C for 92 days) are 3-hexenal, pentanal, 2-heptenal, 2-ethylfuran, hexanal, benzeneacetaldehyde, 2-pentylfuran, 3-methylhexane, 1-pentanol and 2,4-heptadienal. More than half of these compounds have a close relationship with the initial content of linoleic acid that agrees with the fatty acid profile of sunflower oil (~ 70% linoleic acid). These volatiles could be used as additional markers of oxidation in sunflower oil mayonnaise.

Keywords: BHA; GC × GC; Lipid oxidation; Mayonnaise; Volatile oxidation compounds.