Selective CO2 Electroreduction to Ethylene and Multicarbon Alcohols via Electrolyte-Driven Nanostructuring

Angew Chem Int Ed Engl. 2019 Nov 18;58(47):17047-17053. doi: 10.1002/anie.201910155. Epub 2019 Oct 8.

Abstract

Production of multicarbon products (C2+ ) from CO2 electroreduction reaction (CO2 RR) is highly desirable for storing renewable energy and reducing carbon emission. The electrochemical synthesis of CO2 RR catalysts that are highly selective for C2+ products via electrolyte-driven nanostructuring is presented. Nanostructured Cu catalysts synthesized in the presence of specific anions selectively convert CO2 into ethylene and multicarbon alcohols in aqueous 0.1 m KHCO3 solution, with the iodine-modified catalyst displaying the highest Faradaic efficiency of 80 % and a partial geometric current density of ca. 31.2 mA cm-2 for C2+ products at -0.9 V vs. RHE. Operando X-ray absorption spectroscopy and quasi in situ X-ray photoelectron spectroscopy measurements revealed that the high C2+ selectivity of these nanostructured Cu catalysts can be attributed to the highly roughened surface morphology induced by the synthesis, presence of subsurface oxygen and Cu+ species, and the adsorbed halides.

Keywords: CO2 electroreduction; adsorbed halides; copper(I); electrolyte-driven nanostructuring; multicarbon products.

Publication types

  • Review