Stable flat-top solitons and peakons in the PT-symmetric δ-signum potentials and nonlinear media

Chaos. 2019 Aug;29(8):083108. doi: 10.1063/1.5100294.

Abstract

We discover that the physically interesting PT-symmetric Dirac delta-function potentials can not only make sure that the non-Hermitian Hamiltonians admit fully-real linear spectra but also support stable peakons (nonlinear modes) in the Kerr nonlinear Schrödinger equation. For a specific form of the delta-function PT-symmetric potentials, the nonlinear model investigated in this paper is exactly solvable. However, for a class of PT-symmetric signum-function double-well potentials, a novel type of exact flat-top bright solitons can exist stably within a broad range of potential parameters. Intriguingly, the flat-top solitons can be characterized by the finite-order differentiable waveforms and admit the novel features differing from the usual solitons. The excitation features and the direction of transverse power flow of flat-top bright solitons are also explored in detail. These results are useful for the related experimental designs and applications in nonlinear optics and other related fields.