Economics of New Molecular Targeted Personalized Radiopharmaceuticals

Semin Nucl Med. 2019 Sep;49(5):450-457. doi: 10.1053/j.semnuclmed.2019.07.002.

Abstract

Nuclear medicine has come a long way since 2007 when Adrian Nunn pointed out the approval of radiopharmaceuticals was at an all-time low with all the major radiopharmaceutical agents in use having been approved over 10 years ago. Challenges being the prohibitively high cost of drug development and the large number of drugs failing in clinical trials. Proceed to today where molecular imaging is fast-tracking the drug discovery process by reducing both the time and cost to screen candidates by quantitating the drugs effect on the target and toxicity to normal tissues. Nuclear medicine is now leading medical practice in personalized medicine using the theragnostic approach. Theragnostics is defined as the use of molecular diagnostic techniques in real time to stratify patients to guide treatment decisions such as the choice of drug, the dose of administration, and the timing of drug delivery for a given patient. Enabling visualization and quantitation of in vivo function of the whole body and thus patient heterogeneity and variability informs the physician on how to treat an individual patient. Recent successes such as the Food and Drug Administration approval of Lutathera and NETSPOT have resulted in an increasing number of pharmaceutical companies pursing theragnostics further heightened by the purchase of Advanced Accelerator Applications for 3.9 billion by Novartis and Endocyte, Inc for 2.1 billion. Theragnostics are further aiding drug development by showing which agents are most viable and reducing the overall cost of bringing a drug to clinical trials and regulatory approval. This is indeed a renaissance for nuclear medicine in which the acceptance of imaging to inform and monitor therapy has been embraced and even required by the Food and Drug Administration for the clinical evaluation of targeted therapeutic radiopharmaceuticals showing there is indeed a viable business model for targeted theragnostic radiopharmaceuticals and personalized medicine.

MeSH terms

  • Humans
  • Molecular Targeted Therapy / economics*
  • Neoplasms / diagnostic imaging
  • Neoplasms / radiotherapy
  • Nuclear Medicine / economics
  • Precision Medicine / methods*
  • Radiopharmaceuticals / economics*
  • Radiopharmaceuticals / therapeutic use

Substances

  • Radiopharmaceuticals