Chromatographic editing enhances natural product discovery

J Pharm Biomed Anal. 2019 Nov 30:176:112831. doi: 10.1016/j.jpba.2019.112831. Epub 2019 Aug 21.

Abstract

Fungi are known for their diverse biologically active secondary metabolites, compounds that have provided the basis for many landmark therapeutics in the last century. Due to ease of collection and culturing, the existing fungal chemical literature is vast, and fungal natural product isolation can often be hindered by the numerous nuisance and pan-toxic compounds that many strains produce. Dereplication efforts, aimed at identifying such compounds early in the purification, are imperative to reduce time and expense of rediscovery of known metabolites. The common practice of dereplication then deprioritizes samples containing nuisance compounds and often excludes them from the drug discovery workflow. We have implemented a two-step dereplication protocol that uses tandem mass spectrometry to identify nuisance compounds, followed by mass-directed chromatographic editing to remove them while leaving the remaining 'edited extract' in the drug discovery workflow. This two-step strategy facilitates rapid and more accurate evaluation of the chemical potential of high-throughput extract screening campaigns by consideration of bioactivity beyond that triggered by known metabolites. We demonstrate the isolation of a new natural product antibiotic from an otherwise toxic extract using the technique.

Keywords: Dereplication; Natural products; Subtraction chromatography; Tandem-MS.

MeSH terms

  • Anti-Bacterial Agents / isolation & purification
  • Biological Products / isolation & purification*
  • Chromatography, High Pressure Liquid / methods
  • Drug Discovery / methods*
  • Feasibility Studies
  • Fungi / chemistry
  • High-Throughput Screening Assays / methods*
  • Mycotoxins / chemistry
  • Spectrometry, Mass, Electrospray Ionization / methods
  • Tandem Mass Spectrometry / methods

Substances

  • Anti-Bacterial Agents
  • Biological Products
  • Mycotoxins