Androgen receptor activation reduces the endothelial cell proliferation through activating the cSrc/AKT/p38/ERK/NFκB-mediated pathway

J Steroid Biochem Mol Biol. 2019 Nov:194:105459. doi: 10.1016/j.jsbmb.2019.105459. Epub 2019 Aug 27.

Abstract

The effect of androgen on angiogenesis has been documented. However, its underlying molecular mechanisms have not been well illustrated. Here, we show that treatment with an androgen receptor (AR) agonist, metribolone (R1881; 0.05-5 nM), or dihydrotestosterone (DHT; 0.5-2 nM), concentration- and time-dependently inhibited proliferation in human umbilical venous endothelial cells (HUVEC). This inhibitory effect was confirmed in human microvascular endothelial cells (HMEC-1). Flow cytometric analysis demonstrated that R1881 induced G0/G1 phase cell cycle arrest in HUVEC. Blockade of the AR activity by pre-treatment with an AR antagonist, hydroxyflutamide (HF), or knockdown of AR expression using the shRNA technique abolished the R1881-induced HUVEC proliferation inhibition, suggesting that AR activation can inhibit endothelial cell proliferation. We further investigated the signaling pathway contributing to the proliferation inhibition induced by AR activation. Our data suggest that R1881 reduced the proliferation rate of HUVEC through activating the AR/cSrc/AKT/p38/ERK/NFκB pathway, subsequently up-regulating p53 expression, which in turn increased the levels of p21 and p27 protein, hence decreasing the activities of cyclin-dependent kinase 2 (CDK2) and CDK4, and finally reduced the cell proliferation rate. An extra-nuclear pathway involved in the proliferation inhibition induced by AR activation in vascular endothelial cells was confirmed by showing that membrane-impermeable testosterone-bovine serum albumin (BSA) treatment significantly increased the levels of p53, p27 and p21 protein and reduced cell proliferation. These data highlight the underlying molecular mechanisms by which AR activation induced proliferation inhibition in vascular endothelial cells.

Keywords: Metribolone; cSrc; p21; p27; shRNA.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Androgens / pharmacology*
  • Cell Line
  • Cell Proliferation / drug effects
  • Endothelial Cells / drug effects*
  • Endothelial Cells / metabolism
  • Humans
  • MAP Kinase Signaling System / drug effects
  • Metribolone / pharmacology*
  • NF-kappa B / metabolism
  • Proto-Oncogene Proteins c-akt / metabolism
  • Receptors, Androgen / genetics
  • Receptors, Androgen / metabolism*
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Androgens
  • NF-kappa B
  • Receptors, Androgen
  • Tumor Suppressor Protein p53
  • Metribolone
  • Proto-Oncogene Proteins c-akt