Simplified adenine base editors improve adenine base editing efficiency in rice

Plant Biotechnol J. 2020 Mar;18(3):770-778. doi: 10.1111/pbi.13244. Epub 2019 Sep 19.

Abstract

Adenine base editors (ABEs) have been exploited to introduce targeted adenine (A) to guanine (G) base conversions in various plant genomes, including rice, wheat and Arabidopsis. However, the ABEs reported thus far are all quite inefficient at many target sites in rice, which hampers their applications in plant genome engineering and crop breeding. Here, we show that unlike in the mammalian system, a simplified base editor ABE-P1S (Adenine Base Editor-Plant version 1 Simplified) containing the ecTadA*7.10-nSpCas9 (D10A) fusion has much higher editing efficiency in rice compared to the widely used ABE-P1 consisting of the ecTadA-ecTadA*7.10-nSpCas9 (D10A) fusion. We found that the protein expression level of ABE-P1S is higher than that of ABE-P1 in rice calli and protoplasts, which may explain the higher editing efficiency of ABE-P1S in different rice varieties. Moreover, we demonstrate that the ecTadA*7.10-nCas9 fusion can be used to improve the editing efficiency of other ABEs containing SaCas9 or the engineered SaKKH-Cas9 variant. These more efficient ABEs will help advance trait improvements in rice and other crops.

Keywords: ABE-P1S; Cas9 variants; ecTadA deaminase; editing efficiency; rice.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenine / chemistry*
  • Gene Editing*
  • Genome, Plant*
  • Oryza / genetics*

Substances

  • Adenine