Quantitative and Qualitative Comparison of 4D-DSA with 3D-DSA Using Computational Fluid Dynamics Simulations in Cerebral Aneurysms

AJNR Am J Neuroradiol. 2019 Sep;40(9):1505-1510. doi: 10.3174/ajnr.A6172.

Abstract

Background and purpose: 4D-DSA allows time-resolved 3D imaging of the cerebral vasculature. The aim of our study was to evaluate this method in comparison with the current criterion standard 3D-DSA by qualitative and quantitative means using computational fluid dynamics.

Materials and methods: 3D- and 4D-DSA datasets were acquired in patients with cerebral aneurysms. Computational fluid dynamics analysis was performed for all datasets. Using computational fluid dynamics, we compared 4D-DSA with 3D-DSA in terms of both aneurysmal geometry (quantitative: maximum diameter, ostium size [OZ1/2], volume) and hemodynamic parameters (qualitative: flow stability, flow complexity, inflow concentration; quantitative: average/maximum wall shear stress, impingement zone, low-stress zone, intra-aneurysmal pressure, and flow velocity). Qualitative parameters were descriptively analyzed. Correlation coefficients (r, P value) were calculated for quantitative parameters.

Results: 3D- and 4D-DSA datasets of 10 cerebral aneurysms in 10 patients were postprocessed. Evaluation of aneurysmal geometry with 4D-DSA (r maximum diameter = 0.98, P maximum diameter <.001; r OZ1/OZ2 = 0.98/0.86, P OZ1/OZ2 < .001/.002; r volume = 0.98, P volume <.001) correlated highly with 3D-DSA. Evaluation of qualitative hemodynamic parameters (flow stability, flow complexity, inflow concentration) did show complete accordance, and evaluation of quantitative hemodynamic parameters (r average/maximum wall shear stress diastole = 0.92/0.88, P average/maximum wall shear stress diastole < .001/.001; r average/maximum wall shear stress systole = 0.94/0.93, P average/maximum wall shear stress systole < .001/.001; r impingement zone = 0.96, P impingement zone < .001; r low-stress zone = 1.00, P low-stress zone = .01; r pressure diastole = 0.84, P pressure diastole = .002; r pressure systole = 0.9, P pressure systole < .001; r flow velocity diastole = 0.95, P flow velocity diastole < .001; r flow velocity systole = 0.93, P flow velocity systole < .001) did show nearly complete accordance between 4D- and 3D-DSA.

Conclusions: Despite a different injection protocol, 4D-DSA is a reliable basis for computational fluid dynamics analysis of the intracranial vasculature and provides equivalent visualization of aneurysm geometry compared with 3D-DSA.

Publication types

  • Comparative Study

MeSH terms

  • Algorithms
  • Angiography, Digital Subtraction / methods*
  • Female
  • Hemodynamics
  • Humans
  • Hydrodynamics*
  • Imaging, Three-Dimensional / methods
  • Intracranial Aneurysm / diagnostic imaging*
  • Male
  • Middle Aged
  • Neuroimaging / methods*