An experimental approach to the preservation potential of magnetic signatures in anthropogenic fires

PLoS One. 2019 Aug 29;14(8):e0221592. doi: 10.1371/journal.pone.0221592. eCollection 2019.

Abstract

Archaeomagnetic and rock-magnetic methods are of great value in the identification of archaeological fire, especially in Palaeolithic sites where evidence is usually scarce, ambiguous or poorly preserved. Although taphonomic processes can significantly modify Palaeolithic combustion structures, the extent to which such processes affect the magnetic record remains unknown. Here we report the results of an archaeomagnetic study involving five, two-to-five-year-old experimental combustion structures in open-air and cave settings. Some of these combustion structures involved post-combustion human actions such as trampling and relighting. Our results show pseudo-single domain (PSD) magnetite as the main magnetic carrier. Wood ash layers of combustion structures are the most magnetic facies followed by thermally altered sediments constituting the combustion substrates. A decreasing magnetic concentration pattern in depth was observed as a function of temperature. Positive correlation was found between good-quality directional data and macroscopically well-preserved combustion structures. Partial thermoremanent magnetization (pTRM) was the main magnetization mechanism identified in the combustion substrate facies. These data coupled with partial thermomagnetic curve experiments show the potential of these methods to estimate maximum temperatures of the last combustion event. Relightings show very good directional results, but they cannot be identified because the time between them is not enough to statistically distinguish directional variations of the local Earth´s magnetic field. The substrate sediment of an intensively trampled combustion structure yielded reliable archaeomagnetic directions. The results are discussed in terms of magnetization preservation potential and the effects of taphonomic processes on the archaeomagnetic record.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaeology*
  • Fires*
  • Geologic Sediments
  • Humans
  • Magnetic Phenomena*

Grants and funding

This work was supported by: -Á.H.L.: predoctoral contract of Junta de Castilla y León with also European Social Funds (ESF; Operational Programme for Castilla y León); -A.C., J.J.V.: Junta de Castilla y León (Project BU235P18) with also European Fund for Economic and Regional Development (EFRD) funding; -Á.H.L., J.J.V.: Spanish Ministry of Economy and Competitiveness (MINECO) with also EFRD funding (Project CGL2016-77560); -C.M., C.M.H., Á.H.L., A.C.: The Leakey Foundation (Neandertal Fire Technology Project) -C.M.: ERC Consolidator Grant project PALEOCHAR – 648871 https://erc.europa.eu/funding/consolidator-grants; -C.M., C.M.H., Á.H.L.: MINECO and EFRD funding (HAR2015-68321-P Project). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.