Tungsten-Doped L10 -PtCo Ultrasmall Nanoparticles as a High-Performance Fuel Cell Cathode

Angew Chem Int Ed Engl. 2019 Oct 21;58(43):15471-15477. doi: 10.1002/anie.201908824. Epub 2019 Sep 17.

Abstract

The commercialization of proton exchange membrane fuel cells (PEMFCs) relies on highly active and stable electrocatalysts for oxygen reduction reaction (ORR) in acid media. The most successful catalysts for this reaction are nanostructured Pt-alloy with a Pt-skin. The synthesis of ultrasmall and ordered L10 -PtCo nanoparticle ORR catalysts further doped with a few percent of metals (W, Ga, Zn) is reported. Compared to commercial Pt/C catalyst, the L10 -W-PtCo/C catalyst shows significant improvement in both initial activity and high-temperature stability. The L10 -W-PtCo/C catalyst achieves high activity and stability in the PEMFC after 50 000 voltage cycles at 80 °C, which is superior to the DOE 2020 targets. EXAFS analysis and density functional theory calculations reveal that W doping not only stabilizes the ordered intermetallic structure, but also tunes the Pt-Pt distances in such a way to optimize the binding energy between Pt and O intermediates on the surface.

Keywords: electrocatalysis; fuel cells; nanoparticles; oxygen reduction; phase transformation.

Publication types

  • Review