Carboxymethyl Chitosan Modified Carbon Nanoparticle for Controlled Emamectin Benzoate Delivery: Improved Solubility, pH-Responsive Release, and Sustainable Pest Control

ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34258-34267. doi: 10.1021/acsami.9b12564. Epub 2019 Sep 5.

Abstract

Environmentally friendly pesticide delivery systems have drawn extensive attention in recent years, and they show great promise in sustainable development of agriculture. We herein report a multifunctional nanoplatform, carboxymethyl chitosan modified carbon nanoparticles (CMC@CNP), as the carrier for emamectin benzoate (EB, a widely used insecticide), and investigate its sustainable antipest activity. EB was loaded on CMC@CNP nanocarrier via simple physisorption process, with a high loading ratio of 55.56%. The EB@CMC@CNP nanoformulation showed improved solubility and dispersion stability in aqueous solution, which is of vital importance to its practical application. Different from free EB, EB@CMC@CNP exhibited pH-responsive controlled release performance, leading to sustained and steady EB release and prolonged persistence time. In addition, the significantly enhanced anti-UV property of EB@CMC@CNP further ensured its antipest activity. Therefore, EB@CMC@CNP exhibited superior pest control performance than free EB. In consideration of its low cost, easy preparation, free of organic solution, and enhanced bioactivity, we expect, CMC@CNP will have a brilliant future in pest control and green agriculture.

Keywords: carbon nanoparticals; emamectin benzoate; pesticide delivery system; stimuli-responsive release; sustainable development.