Designing of New Optical Immunosensors Based on 2-Amino-4-(anthracen-9-yl)-7-hydroxy-4 H-chromene-3-carbonitrile for the Detection of Aeromonas hydrophila in the Organs of Oreochromis mossambicus Fingerlings

ACS Omega. 2019 Mar 5;4(3):4814-4824. doi: 10.1021/acsomega.8b02467. eCollection 2019 Mar 31.

Abstract

A one-pot greener methodology has been adopted for the synthesis of a simple 4H-chromene core-based fluorescent tag of (S)-2-amino-4-(anthracen-9-yl)-7-hydroxy-4H-chromene-3-carbonitrile (AHC), and its structure has been analyzed using NMR spectroscopy. The physicochemical properties of AHC were well-studied by UV-vis and fluorescent spectroscopy techniques. As a result of excellent emitting property (ϕ ≈ 0.75), it has been coupled with anti-AH through amide linkage, and the AHC-tagged anti-AH has been used as an immunoassay for the selective detection of Aeromonas hydrophila in the presence of interfering pathogens. Under optimized conditions, immunosensors could successfully quantify A. hydrophila from 4 to 736 CFU/mL, and the LOD was 2 CFU/mL. Saliently, the immunoassay has been successfully demonstrated for the analysis of A. hydrophila in the organs of Oreochromis mossambicusfingerlings, and results have shown a very good agreement with our optimized neat AH fluorimetric titration results.