Polyaniline-Layered Rutile TiO2 Nanorods as Alternative Photoanode in Dye-Sensitized Solar Cells

ACS Omega. 2019 Jan 14;4(1):1130-1138. doi: 10.1021/acsomega.8b02628. eCollection 2019 Jan 31.

Abstract

In this paper, dye-sensitized solar cell (DSSC) performance of the less explored polymorph of TiO2, rutile, has been explored, and its performance has been modified with polyaniline (PANI) wrapping on the surface. For this purpose, highly crystalline rutile nanorods have been synthesized without any growth-directing substrates, employing a hydrothermal treatment. Further, to understand the phase composition and morphology, the synthesized nanorods and PANI-layered nanorods have been characterized through various physicochemical methods. The synthesized rods were implemented as photoanode material for DSSCs which exhibited a photoelectric conversion efficiency (PCE) of 4.28% with a high open-circuit voltage (V OC) of 0.84 V which is highly superior to DSSC with Degussa P25 (PCE = 3.95%) TiO2 nanoparticles. The resultant PCE of the nanorods was further enhanced to 6.23% on in situ deposition of PANI which acts as an electron-transporting layer. Introduction of conducting PANI over the rutile rod was explored as a new concept to improve the performance of photoanode material besides conventional TiCl4 treatment or scattering layer deposition.