Improving the Visible-Light Photocatalytic Activity of Graphitic Carbon Nitride by Carbon Black Doping

ACS Omega. 2018 Nov 7;3(11):15009-15017. doi: 10.1021/acsomega.8b01933. eCollection 2018 Nov 30.

Abstract

Hydrogen production by water splitting and the removal of aqueous dyes by using a catalyst and solar energy are an ideal future energy source and useful for environmental protection. Graphitic carbon nitride can be used as the photocatalyst with visible light irradiation. However, it typically suffers from the high recombination of carriers and low electrical conductivity. Here, we have developed a facile mix-thermal strategy to prepare carbon black-modified graphitic carbon nitrides, which possess high electrical conductivity, a wide adsorption range of visible light, and a low recombination rate of carriers. With the help of carbon black, highly crystallized graphitic carbon nitrides with built-in triazine and heptazine heterojunctions are obtained. Improved photocatalytic activities have been achieved in carbon black-modified graphitic carbon nitride. The dye removal rate can be three times faster than that of pristine graphitic carbon nitride and the photocatalytic H2 generation is 234 μmol h-1 g-1 under visible light irradiation.