Exploring the Role of Solvent on Carbohydrate-Aryl Interactions by Diffusion NMR-Based Studies

ACS Omega. 2018 Jan 17;3(1):536-543. doi: 10.1021/acsomega.7b01630. eCollection 2018 Jan 31.

Abstract

Carbohydrate-protein interactions play an important role in many molecular recognition processes. An exquisite combination of multiple factors favors the interaction of the receptor with one specific type of sugar, whereas others are excluded. Stacking CH-aromatic interactions within the binding site provide a relevant contribution to the stabilization of the resulting sugar-protein complex. Being experimentally difficult to detect and analyze, the key CH-π interaction features have been very often dissected using a variety of techniques and simple model systems. In the present work, diffusion NMR spectroscopy has been employed to separate the components of sugar mixtures in different solvents on the basis of their differential ability to interact through CH-π interactions with one particular aromatic cosolute in solution. The experimental data show that the properties of the solvent did also influence the diffusion behavior of the sugars present in the mixture, inhibiting or improving their separation. Overall, the results showed that, for the considered monosaccharide derivatives, their diffusion coefficient values and, consequently, their apparent molecular sizes and/or shapes depend on the balance between solute/cosolute as well as solute/solvent interactions. Thus, in certain media and in the presence of the aromatic cosolute, the studied saccharides that are more suited to display CH-π interactions exhibited a lower diffusion coefficient than the noncomplexing sugars in the mixture. However, when dissolved in another medium, the interaction with the solvent strongly competes with that of the aromatic cosolute.