Photoenhanced Ferromagnetism in High-K+-Containing K-Ni-Cr Prussian Blue Analogues Coated on Rb-Co-Fe Nanocubes

ACS Omega. 2017 Aug 4;2(8):4227-4236. doi: 10.1021/acsomega.7b00565. eCollection 2017 Aug 31.

Abstract

A large enhancement of the Ni and Cr ferromagnetic moments under UV-light irradiation has been detected in 55 nm thick K0.98Ni[Cr(CN)6]0.70[(H2O)6]0.30·0.11H2O Prussian blue analogues coated on 240 nm Rb0.76Co[Fe(CN)6]0.74[(H2O)6]0.26·0.56H2O nanocubes. Two separate magnetic transitions were found. The one at 72 K marks the magnetic ordering of the Ni and Cr ions on the shell. A higher degree of electronic connection along the Ni-N-C-Cr-C-N-Ni chains was achieved by the incorporation of a larger amount of K+ ions into the voids enclosed by the NiN6 and CrC6 octahedra, which was used to understand the appearance of photoenhanced ferromagnetism in the K-Ni-Cr network. A weak moment developed in the core below 10 K, corresponding to separate ordering of the Co and Fe ions in the Rb-Co-Fe network. Photoinduced ferromagnetism of the Co and Fe ions in the Rb-Co-Fe was also detected.