Thin-Film Carbon Nanofuses for Permanent Data Storage

ACS Omega. 2017 Jun 2;2(6):2432-2438. doi: 10.1021/acsomega.7b00025. eCollection 2017 Jun 30.

Abstract

In this study, we have fabricated nanofuses from thin-film, arc-deposited carbon for use in permanent data storage. Thin-film carbon fuses have fewer fabrication barriers and retain the required resistivity and structural stability to act as a data-storage medium. Carbon thin films were characterized for their electrical, microstructural, and chemical bonding properties. Annealing these films in an argon environment at 400 °C reduced the resistivity from about 4 × 10-2 Ω cm as deposited to about 5 × 10-4 Ω cm, allowing a lower blowing voltage. Nanofuses with widths ranging from 200 to 60 nm were fabricated and tested. They blow with voltages between 2 and 5.5 V, and the nanofuses remain stable in both "1" and "0" states under a constantly applied read voltage of 1 V for over 90 h.