Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO4 Solid-Solution Ceramics

ACS Omega. 2016 Nov 18;1(5):963-970. doi: 10.1021/acsomega.6b00274. eCollection 2016 Nov 30.

Abstract

A series of (Bi1-x Y x )VO4 (0.4 ≤ x ≤ 1.0) ceramics were synthesized using the traditional solid-state reaction method. In the composition range of 0.4 ≤ x ≤ 1.0, a zircon-type solid solution was formed between 900 and 1550 °C. Combined with our previous work (scheelite monoclinic and zircon-type phases coexist in the range of x < 0.40), a pseudobinary phase diagram of BiVO4-YVO4 is presented. As x decreased from 1.0 to 0.40, the microwave permittivity (εr) of (Bi1-x Y x )VO4 ceramics increased linearly from 11.03 to 30.9, coincident with an increase in the temperature coefficient of resonant frequency (TCF) from -61.3 to +103 ppm/°C. Excellent microwave dielectric properties were obtained for (Bi0.3Y0.7)VO4 sintered at 1025 °C and (Bi0.2Y0.8)VO4 sintered at 1075 °C with εr ∼ 19.35, microwave quality factor (Qf) ∼ 25 760 GHz, and TCF ∼ +17.8 ppm/°C and εr ∼ 16.3, Qf ∼ 31 100 GHz, and TCF ∼ -11.9 ppm/°C, respectively. Raman spectra, Shannon's additive rule, a classical oscillator model, and far-infrared spectra were employed to study the structure-property relations in detail. All evidence supported the premise that Bi-based vibrations dominate the dielectric permittivity in the microwave region.