Chiral Imidazolium-Functionalized Au Nanoparticles: Reversible Aggregation and Molecular Recognition

ACS Omega. 2016 Nov 9;1(5):876-885. doi: 10.1021/acsomega.6b00141. eCollection 2016 Nov 30.

Abstract

Gold nanoparticles (AuNPs) stabilized by imidazolium salts derived from amino acids [glycine (1), rac-alanine (2), l-phenylalanine (3), and rac-methionine (4)] were prepared. The AuNPs were stabilized the most by 4, which kept the particles dispersed in water for months at pH > 5.5. These AuNPs exhibited a well-defined absorption band at 517 nm and had an average particle size of 11.21 ± 0.07 nm. The 4-AuNPs were reversibly aggregated by controlling the pH of the solution. Chiral R,R-4-AuNPs and S,S-4-AuNPs were synthesized, and the chiral environment on the nanoparticle surface was confirmed using circular dichroism; these nanoparticles exhibited a molecular recognition of chiral substrates. Furthermore, they showed potential for separating racemic mixtures when supported on a layered double hydroxide.