Real-time optical properties and oxygenation imaging using custom parallel processing in the spatial frequency domain

Biomed Opt Express. 2019 Jul 11;10(8):3916-3928. doi: 10.1364/BOE.10.003916. eCollection 2019 Aug 1.

Abstract

The development of real-time, wide-field and quantitative diffuse optical imaging methods is becoming increasingly popular for biological and medical applications. Recent developments introduced a novel approach for real-time multispectral acquisition in the spatial frequency domain using spatio-temporal modulation of light. Using this method, optical properties maps (absorption and reduced scattering) could be obtained for two wavelengths (665 nm and 860 nm). These maps, in turn, are used to deduce oxygen saturation levels in tissues. However, while the acquisition was performed in real-time, processing was performed post-acquisition and was not in real-time. In the present article, we present CPU and GPU processing implementations for this method with special emphasis on processing time. The obtained results show that the proposed custom direct method using a General Purpose Graphic Processing Unit (GPGPU) and C CUDA (Compute Unified Device Architecture) implementation enables 1.6 milliseconds processing time for a 1 Mega-pixel image with a maximum average error of 0.1% in extracting optical properties.