Activity-based ratiometric FRET probe reveals oncogene-driven changes in labile copper pools induced by altered glutathione metabolism

Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18285-18294. doi: 10.1073/pnas.1904610116. Epub 2019 Aug 26.

Abstract

Copper is essential for life, and beyond its well-established ability to serve as a tightly bound, redox-active active site cofactor for enzyme function, emerging data suggest that cellular copper also exists in labile pools, defined as loosely bound to low-molecular-weight ligands, which can regulate diverse transition metal signaling processes spanning neural communication and olfaction, lipolysis, rest-activity cycles, and kinase pathways critical for oncogenic signaling. To help decipher this growing biology, we report a first-generation ratiometric fluorescence resonance energy transfer (FRET) copper probe, FCP-1, for activity-based sensing of labile Cu(I) pools in live cells. FCP-1 links fluorescein and rhodamine dyes through a Tris[(2-pyridyl)methyl]amine bridge. Bioinspired Cu(I)-induced oxidative cleavage decreases FRET between fluorescein donor and rhodamine acceptor. FCP-1 responds to Cu(I) with high metal selectivity and oxidation-state specificity and facilitates ratiometric measurements that minimize potential interferences arising from variations in sample thickness, dye concentration, and light intensity. FCP-1 enables imaging of dynamic changes in labile Cu(I) pools in live cells in response to copper supplementation/depletion, differential expression of the copper importer CTR1, and redox stress induced by manipulating intracellular glutathione levels and reduced/oxidized glutathione (GSH/GSSG) ratios. FCP-1 imaging reveals a labile Cu(I) deficiency induced by oncogene-driven cellular transformation that promotes fluctuations in glutathione metabolism, where lower GSH/GSSG ratios decrease labile Cu(I) availability without affecting total copper levels. By connecting copper dysregulation and glutathione stress in cancer, this work provides a valuable starting point to study broader cross-talk between metal and redox pathways in health and disease with activity-based probes.

Keywords: activity-based sensing; cancer metabolism; fluorescent copper probe; oxidative stress; ratiometric imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Copper / metabolism*
  • Copper Transporter 1 / metabolism
  • Fluorescein
  • Fluorescence Resonance Energy Transfer / methods*
  • Glutathione / metabolism*
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Image Processing, Computer-Assisted
  • Molecular Probe Techniques*
  • Neoplasms / metabolism
  • Oncogenes / physiology*
  • Oxidation-Reduction
  • Oxidative Stress
  • Rhodamines
  • Signal Transduction

Substances

  • Copper Transporter 1
  • Rhodamines
  • SLC31A1 protein, human
  • Copper
  • Glutathione
  • Fluorescein