Effect of power ultrasound and Fenton reagents on the biomethane potential from steam-exploded birchwood

Ultrason Sonochem. 2019 Nov:58:104675. doi: 10.1016/j.ultsonch.2019.104675. Epub 2019 Jul 5.

Abstract

The global demand for non-fossil energy sources is increasing rapidly. As a result, biogas presents a suitable alternative; however, first generation biofuels (e.g., sugar cane) potentially impact food crops globally. Second generation biofuels based on lignocellulose-based biomass are being used more frequently as they do not impact food crops. Furthermore, in Northern Europe, there is a significant interest in utilizing birchwood and paper mill waste for biogas production due to its high availability. The utilization of birchwood for biogas has significantly improved in recent years with the improvement of required pretreatment processes. To date, the most effective and economically feasible pretreatment in an industrial context is the steam explosion of lignocellulose-based biomass. Despite this, there is potential for releasing more digestible components from this biomass by efficiently degrading the lignocellulose components. This research presents another pretreatment that can be applied to steam-exploded wood based on ultrasonication and Fenton reagents. It was observed that by treating the steam exploded birchwood with ultrasonication and mild concentrations of Fenton reagents, an increase in the rate of biogas production was achievable. This would allow the increase in biogas yield of a continuously feed industrial anaerobic digester without increasing the size of the reactor.

Keywords: Anaerobic digestion; Biogas; Birch wood; Lignocellulose; Renewable energy; Ultrasonication.