High-Throughput DNA Plasmid Multiplexing and Transfection Using Acoustic Nanodispensing Technology

J Vis Exp. 2019 Aug 8:(150). doi: 10.3791/59570.

Abstract

Cell transfection, indispensable for many biological studies, requires controlling many parameters for an accurate and successful achievement. Most often performed at low throughput, it is moreover time-consuming and error-prone, even more so when multiplexing several plasmids. We developed an easy, fast, and accurate method to perform cell transfection in a 384-well plate layout using acoustic droplet ejection (ADE) technology. The nanodispenser device used in this study is based on this technology and allows precise nanovolume delivery at high speed from a source well plate to a destination one. It can dispense and multiplex DNA and transfection reagent according to a predesigned spreadsheet. Here we present an optimal protocol to perform ADE-based high-throughput plasmid transfection which makes it possible to reach an efficiency of up to 90% and a nearly 100% cotransfection in cotransfection experiments. We extend initial work by proposing a user-friendly spreadsheet-based macro, able to manage up to four plasmids/wells from a library containing up to 1,536 different plasmids, and a tablet-based pipetting guide application. The macro designs the necessary template(s) of the source plate(s) and generates the ready-to-use files for the nanodispenser and tablet-based application. The four-steps transfection protocol involves i) a diluent dispense with a classical liquid handler, ii) plasmid distribution and multiplexing, iii) a transfection reagent dispense by the nanodispenser, and iv) cell plating on the prefilled wells. The described software-based control of ADE plasmid multiplexing and transfection allows even nonspecialists in the field to perform a reliable cell transfection in a fast and safe way. This method enables rapid identification of optimal settings for a given cell type and can be transposed to higher-scale and manual approaches. The protocol eases applications, such as human ORFeome protein (set of open reading frames [ORFs] in a genome) expression or CRISPR-Cas9-based gene function validation, in nonpooled screening strategies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Biomedical Technology / methods*
  • DNA / genetics*
  • High-Throughput Screening Assays / methods*
  • Humans
  • Plasmids / genetics*
  • Transfection

Substances

  • DNA