Supramolecular design and applications of polyphenol-based architecture: A review

Adv Colloid Interface Sci. 2019 Oct:272:102019. doi: 10.1016/j.cis.2019.102019. Epub 2019 Aug 13.

Abstract

Polyphenol-based materials are of wide-spread interest because of the unique properties of the polyphenol itself. Tannic acid, contains high level of galloyl groups, could be coordinated to a range of metal ions to generate robust mental ion-TA films on substrate or even forming hollow capsules. These films or capsules can be used in the field of sensing, separation and catalysis, most importantly in drug/nutraceutical delivery, allowing for the high loading efficiency, high mechanical and thermal stability, pH-responsive disassembly and fluorescence behavior. Additionally, such coating could also provide protection of the sensitive molecules and cells. With the numerous carbonyl and phenolic functional groups, TA has also been demonstrated to form strong hydrogen bonded multilayers with various non-ionic polymers. The properties of the hydrogen-bonded system were highly influenced by the chemical structure of the polymers, which will change the behavior of pH-, temperature- or ionic strength-responsive release of the loading molecules. Additionally, the ionization of galloyl phenol group was attributed to the interaction between TA and other ionic polymers by electrostatic interaction. The electrostatic interaction/hydrogen bonding derived TA/polyme$$%r complexes could deposit on glass slides, microcores or even forming hollow capsules, promising in their applicability to nutraceutical encapsulation, delivery and depot. Notably, polyphenols self-polymerizing could also deposit coatings on different substrates without any exogenous additives, while the comprehensive undertanding about the self-polymerizing mechenism remains unclear. This review provides a promising prospect for utilizing polyphenol-based materials to design versatile architecture in different system, used in the field of chemistry and materials science.

Keywords: Coordination bonding; Electrostatic interaction; Hydrogen bonded; Self-polymerizing.

Publication types

  • Review