Identifying Freshness of Spinach Leaves Stored at Different Temperatures Using Hyperspectral Imaging

Foods. 2019 Aug 21;8(9):356. doi: 10.3390/foods8090356.

Abstract

Spinach is prone to spoilage in the course of preservation. Spinach leaves stored at different temperatures for different durations will have varying degrees of freshness. In order to monitor the freshness of spinach leaves during storage, a rapid and non-destructive method-hyperspectral imaging technology-was applied in this study. Visible near-infrared reflectance (Vis-NIR) (380-1030 nm) and near-infrared reflectance (NIR) (874-1734 nm) hyperspectral imaging systems were used. Spinach leaves preserved at different temperatures with different durations (0, 3, 6, 9 days at 4 °C and 0, 1, 2 days at 20 °C) were studied. Principal component analysis (PCA) was adopted as a qualitative analysis method. The second-order derivative spectra were utilized to select effective wavelengths. Partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and extreme learning machine (ELM) were used to build models based on full spectra and effective wavelengths. All three models achieved good results, with accuracies above 92% for both Vis-NIR spectra and NIR spectra. ELM obtained the best results, with all accuracies reaching 100%. The overall results indicate the possibility of the freshness identification of spinach preserved at different temperatures for different durations using two kinds of hyperspectral imaging systems.

Keywords: freshness detection; hyperspectral imaging; near-infrared spectra; spinach; visible/near-infrared spectra.