Cost of Salmonella Infections in Australia, 2015

J Food Prot. 2019 Sep;82(9):1607-1614. doi: 10.4315/0362-028X.JFP-19-105.

Abstract

Gastroenteritis caused from infections with Salmonella enterica (salmonellosis) causes significant morbidity in Australia. In addition to acute gastroenteritis, approximately 8.8% of people develop irritable bowel syndrome (IBS) and 8.5% of people develop reactive arthritis (ReA). We estimated the economic cost of salmonellosis and associated sequel illnesses in Australia in a typical year circa 2015. We estimated incidence, hospitalizations, other health care usage, absenteeism, and premature mortality for four age groups using a variety of complementary data sets. We calculated direct costs (health care) and indirect costs (lost productivity and premature mortality) by using Monte Carlo simulation to estimate 90% credible intervals (CrI) around our point estimates. We estimated that 90,833 cases, 4,312 hospitalizations, and 19 deaths occurred from salmonellosis in Australia circa 2015 at a direct cost of AUD 23.8 million (90% CrI, 19.3 to 28.9 million) and a total cost of AUD 124.4 million (90% CrI, 107.4 to 143.1 million). When IBS and ReA were included, the estimated direct cost was 35.7 million (90% CrI, 29.9 to 42.7 million) and the total cost was AUD 146.8 million (90% CrI, 127.8 to 167.9 million). Foodborne infections were responsible for AUD 88.9 million (90% CrI, 63.9 to 112.4 million) from acute salmonellosis and AUD 104.8 million (90% CrI, 75.5 to 132.3 million) when IBS and ReA were included. Targeted interventions to prevent illness could considerably reduce costs and societal impact from Salmonella infections and sequel illnesses in Australia.

Keywords: infections; Cost of illness; Health care costs; Incidence; Monte Carlo methods.

MeSH terms

  • Australia
  • Cost of Illness*
  • Gastroenteritis*
  • Health Care Costs / statistics & numerical data
  • Humans
  • Incidence
  • Prohibitins
  • Salmonella Food Poisoning / economics
  • Salmonella Infections* / economics