Fabrication of PMPC/PTM/PEGDA micropatterns onto polypropylene films behaving with dual functions of antifouling and antimicrobial activities

J Mater Chem B. 2019 Aug 21;7(33):5078-5088. doi: 10.1039/c9tb00927b.

Abstract

Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 μm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 μm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonium Compounds / chemistry*
  • Anti-Infective Agents / chemistry*
  • Anti-Infective Agents / pharmacology
  • Biocompatible Materials / chemistry
  • Biocompatible Materials / pharmacology
  • Biofouling / prevention & control
  • Blood Platelets / cytology
  • Blood Platelets / physiology
  • Cell Adhesion / drug effects
  • Escherichia coli / drug effects
  • Humans
  • Hydrophobic and Hydrophilic Interactions
  • Phosphorylcholine / analogs & derivatives*
  • Phosphorylcholine / chemistry
  • Polyethylene Glycols / chemistry*
  • Polymethacrylic Acids / chemistry*
  • Polypropylenes / chemistry*
  • Staphylococcus aureus / drug effects
  • Surface Properties

Substances

  • Ammonium Compounds
  • Anti-Infective Agents
  • Biocompatible Materials
  • Polymethacrylic Acids
  • Polypropylenes
  • poly(2-methacryloyloxyethyl-phosphorylcholine)
  • poly(ethylene glycol)diacrylate
  • Phosphorylcholine
  • Polyethylene Glycols