Biorefinery for heterogeneous organic waste using microbial electrochemical technology

Bioresour Technol. 2019 Nov:292:121943. doi: 10.1016/j.biortech.2019.121943. Epub 2019 Aug 2.

Abstract

Environmental biorefineries aim to produce biofuels and platform biomolecules from organic waste. To this end, microbial electrochemical technologies theoretically allow controlled microbial electrosynthesis (MES) of organic molecules to be coupled to oxidation of waste. Here, we provide a first proof of concept and a robust operation strategy for MES in a microbial electrolysis cell (MEC) fed with biowaste hydrolysates. This strategy allowed stable operation at 5 A/m2 for more than three months in a labscale reactor. We report a two to four-fold reduction in power consumption compared to microbial electrosynthesis with water oxidation at the anode. The bioelectrochemical characterizations of the cells were used to compute energy and matter balances for biorefinery scenarios in which anaerobic digestion (AD) provides the electricity and CO2 required for the MEC. Calculations shows that up to 22% of electrons (or COD) from waste may be converted to organic products in the AD-MEC process.

Keywords: Anaerobic digestion; Environmental biorefinery; Microbial electrolysis cell; Microbial electrosynthesis.

MeSH terms

  • Biofuels
  • Bioreactors*
  • Electricity
  • Electrodes
  • Electrolysis*

Substances

  • Biofuels