Copper-Halide Polymer Nanowires as Versatile Supports for Single-Atom Catalysts

Small. 2019 Oct;15(40):e1903197. doi: 10.1002/smll.201903197. Epub 2019 Aug 16.

Abstract

Single-atom catalysts are heterogeneous catalysts with atomistically dispersed atoms acting as a catalytically active center, and have recently attracted much attention owing to the minimal use of noble metals. However, a scalable and inexpensive support that can stably anchor isolated atoms remains a challenge due to high surface energy. Here, copper-halide polymer nanowires with sub-nanometer pores are proposed as a versatile support for single-atom catalysts. The synthesis of the nanowires is straightforward and completed in a few minutes. Well-defined sub-nanometer pores and a large free volume of the nanowires are advantageous over any other support material. The nanowires can anchor various atomistically dispersed metal atoms into the sub-nanometer pores up to ≈3 at% via a simple solution process, and this value is at least twice as big as previously reported data. The hydrogen evolution reaction activity of -18.0 A mgPt -1 at -0.2 V overpotential shows its potential for single-atom catalysts support.

Keywords: copper-halide polymer nanowires; hydrogen evolution reaction; inorganic polymers; single-atom catalyst supports.